Geometric Quasi - Isometric Embeddings Into
نویسنده
چکیده
We show that F has an infinite family of quasi-isometrically embedded subgroups of the form F m × Zn, for integral m, n ≥ 0. These subgroups have simple geometric but more complicated algebraic descriptions We present them to illustrate the intricate geometry of Thompson’s group F as well as the interplay between its standard finite and infinite presentations.
منابع مشابه
Geometric quasi-isometric embeddings into Thompson's group F
We use geometric techniques to investigate several examples of quasi-isometrically embedded subgroups of Thompson’s group F . Many of these are explored using the metric properties of the shift map φ in F . These subgroups have simple geometric but complicated algebraic descriptions. We present them to illustrate the intricate geometry of Thompson’s group F as well as the interplay between its ...
متن کاملRight-angled Artin groups and Out(Fn) I: quasi-isometric embeddings
We construct quasi-isometric embeddings from right-angled Artin groups into the outer automorphism group of a free group. These homomorphisms are modeled on the homomorphisms into the mapping class group constructed by Clay, Leininger, and Mangahas in [CLM12]. Toward this goal, we develop tools in the free group setting that mirror those for surface groups and discuss various analogs of subsurf...
متن کاملOn Isometric and Minimal Isometric Embeddings
In this paper we study critial isometric and minimal isometric embeddings of classes of Riemannian metrics which we call quasi-κ-curved metrics. Quasi-κ-curved metrics generalize the metrics of space forms. We construct explicit examples and prove results about existence and rigidity. Introduction Definition: Let (M, g̃) be a Riemannian manifold. We will say g̃ is a quasi-κcurved metric if there ...
متن کاملCovers and the Curve Complex
We propose a program of studying the coarse geometry of combinatorial moduli spaces of surfaces by classifying the quasi-isometric embeddings between them. We provide the first non-trivial examples of quasi-isometric embeddings between curve complexes. These are induced either via orbifold coverings or by puncturing a closed surface. As a corollary, we give new quasiisometric embeddings between...
متن کامل1 1 N ov 2 00 8 Isometric embeddings into the Minkowski space and new quasi - local mass Mu - Tao Wang and Shing - Tung Yau
The definition of quasi-local mass for a bounded space-like region Ω in space-time is essential in several major unsettled problems in general relativity. The quasi-local mass is expected to be a type of flux integral on the boundary two-surface Σ = ∂Ω and should be independent of whichever space-like region Σ bounds. An important idea which is related to the Hamiltonian formulation of general ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008